Theory and Flight-Test Validation of a Concurrent-Learning Adaptive Controller
نویسندگان
چکیده
Theory and results of flight-test validation are presented for a novel adaptive law that concurrently uses current as well as recorded data for improving the performance of model reference adaptive control architectures. This novel adaptive law is termed concurrent learning. This adaptive law restricts theweight updates based on stored data to the null-space of the weight updates based on current data for ensuring that learning on stored data does not affect responsiveness to current data. This adaptive law alleviates the rank-1 condition on weight updates in adaptive control, thereby improving weight convergence properties and improving tracking performance. Lyapunov-like analysis is used to show that the new adaptive law guarantees uniform ultimate boundedness of all system signals in the framework of model reference adaptive control. Flight-test results confirm expected improvements in performance.
منابع مشابه
Flight Test Validation of a Neural Network based Long Term Learning Adaptive Flight Controller
The purpose of this paper is to present and analyze flight test results of a Long Term Learning Adaptive Flight Controller implemented on a rotorcraft and a fixed wing Unmanned Aerial Vehicle. The adaptive control architecture used is based on a proven Model Reference Adaptive Control (MRAC) architecture employing a Neural Network as the adaptive element. The method employed for training the Ne...
متن کاملAdaptive Quaternion Attitude Control of Aerodynamic Flight Control Vehicles
Conventional quaternion based methods have been extensively employed for spacecraft attitude control where the aerodynamic forces can be neglected. In the presence of aerodynamic forces, the flight attitude control is more complicated due to aerodynamic moments and inertia uncertainties. In this paper, a robust nero-adaptive quat...
متن کاملOn the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane
airplane in presence of asymmetric left-wing damaged. Variations of the aerodynamic parameters, mass and moments of inertia, and the center of gravity due to damage are all considered in the nonlinear mathematical modeling. The proposed discrete-time nonlinear MRAC algorithm applies the recursive least square (RLS) algorithm as a parameter estimator as well as the error between the real ...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملFuzzy Adaptive Control of Unmanned Aerial Vehicle for Carrying Time-Varying Cargo on Predefined Path
At present, the use of unmanned aerial vehicles (UAVs) has been increased dramatically. The reasons for this development are cheapness, smallness, simplicity, and diversity of missions. The simplicity of guidance and control of multi-rotor drones is that they are equipped with an autopilot system. This system is responsible for flying control. UAVs do not have a high weight and often have three...
متن کامل